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rotation function to attain interpretable results and, 
thus, provides a significant saving of computation 
time. Furthermore, an accurate solution can be 
obtained from a reasonably small number of strong 
reflections using relatively low-resolution data. 
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Abstract 
A general diffraction theory is presented for the 
diffuse scattering by correlated microdomains within 
a disordered structure. The theory applies to crystals 
with several atoms per unit cell and several types of 
different microdomains. An analytical expression is 
given for an assumed distribution function of the 
microdomains within the disordered matrix of the 
host. Since the analytical Fourier transform of this 
distribution function is also given, very fast calcula- 
tion of the diffuse intensity is possible. 

0108-7673/90/100792-07503.00 

Introduction 
Quantitative interpretations of diffuse scattering are 
frequently done on the basis of the Warren short- 
range-order (SRO) parameters. In the case of simple 
alloy structures, good agreement of calculated and 
observed intensities is obtained. Hayakawa & Cohen 
(1975) presented a generalized solution for structures 
with several sublattices. Any description by SRO 
parameters, however, will not yield information on 
the actual distribution of the defects. Extended 
defects cannot be described. In particular, if the distri- 
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bution of the defects within the crystal shows short- 
range order, a description with SRO parameters will 
give a misleading picture of the true defect structure. 

The theory described in this paper assumes the 
following model. The host crystal is comprised of one 
or several atoms per unit cell. Each of these sites may 
be occupied by one or several different chemical 
elements and /o r  vacancies. The distribution of these 
elements on a specific site is assumed to be random. 
No displacements from the average structure are 
assumed to exist within the host crystal. Small 
domains, called microdomains,  are coherently inter- 
grown within the crystal, i.e. the lattice of the crystal 
is undisturbed. The structure of these microdomains 
may be an ordered superstructure of the host crystal 
or a completely new structure with the same lattice. 
An ordered superstructure may include substitutional 
order as well as displacements from the positions of 
the average structure. The displacements are assumed 
to be small enough for an expansion of the exponen- 
tial function to be valid. Several different types of 
microdomains may be present and no restrictions 
apply to the size of the microdomains. The distribu- 
tion of the microdomains within the host crystal 
shows short-range order. Fig. 1 shows schematically 
the distribution of microdomains within the matrix 
of a crystal. 

Hashimoto (1974) developed a theory to describe 
the diffuse scattering by a distribution of correlated 
microdomains in binary alloys. The SRO parameters 
for the single pairs of atoms are replaced by three 
parameters: a phase factor that describes the type of 
order of the specific microdomain,  a shape function 
that describes the extent and form of the micro- 
domains and a distribution function that describes 
the correlation between the microdomains. The 
definition of the phase factor restricts the theory to 
binary alloys with one kind of microdomain. No 
attempt has been made to give an analytical descrip- 
tion of the distribution function permitting a direct 
Fourier transformation. 

Fig. 1. Schematic distribution of  microdomains within a disor- 
dered matrix. Modified after Hashimoto (1974). Microdomains 
1, 2 and 3 lie correlated within the crystal, while the other 
microdomains are distributed at random. The distance a is the 
average separation of  the microdomains. The length of  coher- 
ence, b, is the average length over which the microdomains are 
distributed at constant spacing. 

In this paper  the theory by Hashimoto (1974) is 
extended to general structures. Instead of the phase 
factor the structure factor of each microdomain is 
explicitly calculated. This allows for any number of 
types of microdomain in a structure with several 
atoms per unit cell. An analytical model for the distri- 
bution function is based on the model for a paracrys- 
tal as described by Hosemann (1951; Hosemann & 
Bagchi, 1952). For this distribution function a Fourier 
transform is presented, which permits direct calcula- 
tion of the intensity distribution in reciprocal space. 

General theory 

The amplitude scattered by a crystal with several 
atoms per unit cell is given by 

A(h)=~,~( fr+df~r)exp(-27r ihr ,r ) ,  (1) 
K i 

where K = index of site in the unit cell, i = index of 
unit cell of the average structure, f r  = average atomic 
scattering factor of atoms on the site K including the 
Debye-Waller  factor, Afar=deviat ion from the 
average atomic scattering factor at the site K in unit 
cell i, h=sca t te r ing  vector, r ir  =vector  from the 
origin to the atom i (actual position, i.e. displacements 
from ideal positions are included). 

This general expression includes substitutional dis- 
order and displacement disorder. 

The intensity is given by the square of the 
amplitude: 

l (h)  = ~ ~ (fr. + ArK) exp (--2~rihr,r) 
K i 

x ~. ~_, ( f*  + Af*L) exp (+27rihrjt.). (2) 
L j  

The multiplication can be carried out and the terms 
be sorted according to the various products o f f :  

l ( h ) =  I , +  12+ I3+/4  

= E E E E f r f ~  exp [ -2zr ih( r , r  - rjL)] 
K L i j  

+ Y~ Y~ Y. ~ f rAf*L  exp  [ - 2 ¢ r i h ( r ~ r  - r j L ) ]  
K L i  j 

+ E E E ~, Afar f *  exp [-2~ih(r,r - r~/.)] 
K L i  j 

+ E ~, E E Af~rAf*L exp [-27rih(r , r  - rjL)]. 
K L i  j 

(3) 

The first sum I~ includes the intensity of the Bragg 
reflections. Since r~K and rjt. deviate from the ideal 
positions only for the atoms within the microdomains, 
I~ also includes a weak contribution of diffuse scatter- 
ing due to the displacement from the averaged struc- 
ture. This contribution, which has been described by 
Cowley (1981) and Schwartz & Cohen (1977), is 
neglected in the present approximation. 12-t-13 
average approximately to zero, see Appendix A. The 



794 DIFFRACTION THEORY FOR DIFFUSE SCATTERING 

fourth sum/4  describes the scattering by short-range 
order and will be denoted by ISRO. Within this sum 
it can be distinguished whether an atom is within or 
outside a microdomain: 

IsRo(h) = ISROa + ISRO,E + ISRO,3 + ISRO.4 

= E E E E AfmrAf*L 
K L m n  

x exp [--2rrih(r,,K -- r,L)] 

+ Y E E Y~ aforaf*, 
K L o n  

x exp [--27rih(roK -- r.L)] 

+ E E • E Af,,,KAf*L 
K L m p  

x exp [-2rrih(rmr - r p L ) ]  

+ X E Y Y~ afoKaf*, 
K L o  p 

x exp [-27rih(roK - rpL)]. (4) 

The subscripts m and n in (4) describe atoms that 
do not lie in a microdomain, while the subscripts o 
and p describe atoms that lie within a microdomain. 
The first sum is the monotonic Laue scattering due 
to a random distribution of point defects. The next 
two sums average to zero since no correlation exists 
between atoms within a microdomain and outside, 
see Appendix B. The fourth sum describes the contri- 
bution to diffuse scattering by correlated micro- 
domains and will be denoted IMD. At this point, the 
center of a microdomain is defined to be a lattice 
point within the microdomain. With this definition, 
the vector from the origin to the atoms is now separ- 
ated into a vector from the origin to the center of the 
microdomain and a vector from the center of the 
microdomain to the atom: roK = R u + r ~ o , .  Thus, 
ISRO,4 in (4) can be split into a sum over all micro- 
domains u, v and a sum over all atoms within the 
microdomain: 

IuD(h) = E E E X E E * AfKo, Af Lm, 
u o K L o p 

x exp {-27rih[(R~ +r~:o~)- (Ro + r~_pv)]}. 

(5) 

Equation (5) can be written as 

IMD(h):~[~oAfKoueXp(--27rihr'ro~) ] 

x exp [-2~-ih(R,, - R~)]. (6) 

The terms in square brackets describe the deviation 
of the structure factor of the microdomains from the 
structure factor of the average structure and will b'e 
abbreviated to F. or Fv. Thus, (6) describes the diffuse 

scattering by a distribution of microdomains: 

I M o ( h ) = ~  F,,F* exp[-2zr ih(R, , -Rv)] .  (7) 
u 1) 

For all microdomains of one type the structure factor 
F,, is now denoted by the structure factor of this type 
F,. The sums over u and v will then be separated into 
a sum over all types of microdomains t and s and a 
sum over all microdomains u' of type t and v' of type 
s, respectively: 

IMD(h) = Y. Y. FtF* Y~ Y~ exp [-2¢rih(R,,,, - R,,,~)]. 
J ~ " '  ~' ( 8 )  

Since the exact distribution of microdomains is 
unknown, a distribution function must be assumed. 
With R~ = R.,I - R~,~, the explicit sum over all micro- 
domains can be replaced by a sum over all vectors 
R,. The distribution function P',~(R~) is equal to one 
if R~ connects two microdomains of type t and s, and 
otherwise zero. Thus, the value of P',~(R~) explicitly 
depends on the length and direction of R1 as well as 
its origin: 

IMD(h) = Y. Y~ F,F* Y. P',, (Rt) exp (-2rrihRt). (9) 
t s 1 

In (9) the sum over l includes all vectors within the 
crystal between any pair of lattice sites. This sum can 
be separated into a sum over all free vectors l' of a 
given direction and length and an inner sum over all 
the origins j of the vectors of direction and length 
given by l': 

/MD(h) = ~  Y~t ~ F,F,Y~[~P',~(Rrj) e x p ( - 2 ¢ r i h R , ~ ) ] r  

(lo) 

Since Rrj is identical for all j, the exponential term 
in (10) can be taken out of the summation over j. The 
explicit distribution function P't~(Rtu) can now be 
approximated by the average distribution function 
P,,(Rr) for a given free vector I'. For R r = 0 ,  the 
distribution function is equal to 6,~ and thus the sum 
over j equals N, St~ where Nt is the number of micro- 
domains of type t in the crystal. For Rr # 0 the sum 
over j can be calculated exactly for two extreme 
situations, perfect periodic distribution and random 
distribution. For a perfect periodic distribution the 
sum over j is equal to Nt or 0, depending upon 
whether Rr is a superlattice vector for the perfect 
periodic distribution or not. For a random'distribu- 
tion of microdomains the probability of finding 
another microdomain N of type s is Nsv/V, where 
Ns is the number of microdomains of type s, V the 
volume of the crystal and v the volume of a micro- 
domain. Thus, the sum over j is equal to NtN~v/V. 
For a distribution with short-range order the probabil- 
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ity to find a microdomain oscillates around Nsv/V 
and the value of the sum over j oscillates around 
NtNsv/V. The oscillation around Nsv/V is described 
by the average distribution function Pts(Rr), and thus 
(10) is 

IMD(h) = E E FtF* Nt [c$ts + E Pt~(Rr) 
t s L. I ' ( R I , # 0 )  

x exp ( - 2  7ribRr) J .  (11) 

Now the sum over l' describes only all free lattice 
vectors. In (11) the term 

~, Pt~(Rr) exp (-27rihRr) (12) 
l '  

describes the Fourier transformation of the distribu- 
tion function of the microdomains. An analytical 
solution of this Fourier transformation, which is 
based on the model of a paracrystal, is given in the 
next section. 

Four ier  t r a n s f o r m a t i o n  o f  the  d i s t r i b u t i o n  f u n c t i o n  

Hosemann (1951; Hosemann & Bagchi, 1952)intro- 
duced the concept of a paracrystal. In this model the 
position of the next neighbor of an atom is described 
by a continuous distribution function H~(r). The dis- 
tribution of the second neighbor is given by the self- 
convolution of H~(r). The distribution of all neigh- 
bors is then given by the geometric sum over all self 
convolutions: 

P(r)=Ho+~,,(ffI'~+H_~). (13) 
m 

Here H ~  denotes the mth self convolution of H~ and 
Ho is the 8 function. Fig. 2 shows the first two parts 
of the distribution function for a one-dimensional 
distribution. Vainshtein (1966) described in detail the 
Fourier transformation of this distribution function 
P(r). For a one-dimensional distribution the Fourier 

transform is 

1+ E[ 2 

Z(h) = 1 -2  E cos (2~rha)+ E 2, (14) 

where t~ is the average distance of the first neighbor 
and I EI the modulus of the Fourier transform of H~ (r). 
In the simplest approach, the transform of a three- 
dimensional distribution is given by the product of 
three components. 

To apply this model to the distribution of micro- 
domains in a crystal, it has to be taken into account 
that the vector connecting two microdomains cannot 
be of any length. Rather, the vector is limited to lattice 
vectors. The easiest way to describe this limitation is 
to multiply (13) with a lattice function. The con- 
tinuous distribution H1 is then replaced by a discon- 
tinuous distribution: 

H I = Z  H18(x-nRo), ( 1 5 )  
ti 

where Ro gives the separation of lattice points, i.e. 
the length of the unit cell. The average distance of 
the first neighbour, ti in (14), is ~ =  qRo, where q 
does not need to be an integer number. Fig. 3 shows 
this discontinuous distribution. The distribution H i  
of the second neighbor follows from the self convol- 
ution of H~" 

Hi = H~ * H~ 

--E E I H,( U)H~(x- U) 
n m 

x 8( U -  nRo)8(x- U -  mRo) dU. (16) 

The terms in the integral can be sorted to yield 

H i  = E E I [ H , ( U ) H , ( x -  U ) 8 ( x -  U -  mRo)] 
n m 

x 8 (U-nRo)dU.  (17) 

Since J g( t )8 ( t -  b) = g(b), the integration of the 
term in square brackets with the 8 function can be 

a 
r 

P(r) 

Fig. 2. Distribution function P(r) = Ho(r) + Hn(r) * Hi(r). The dis- 
tribution of the first and second neighbors. The distribution of 
the second neighbors is given by the self convolution of  the 
distribution of the first neighbors. 

P " ( r )  

a 
r 

Fig. 3. Discontinuous distribution function P"(r). A one-dimen- 
sional lattice has been multiplied with the continuous distribu- 
tion of Fig. 2. The probability of finding a microdomain on a 
given site is determined by the height ofthe distribution function. 
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evaluated as 

Hi= ~, Y~ H,(nRo)H,(x- nRo)6[x-(n + m ) R o ] .  
n m ( 1 8 )  

The subscript m can be replaced by a subscript k 
with k = n + m and thus rn = k - n. The summations 
over n and m run from minus infinity to plus infinity. 
Thus, the sum over k runs from minus infinity to plus 
infinity as well and is independent of n: 

H~=ZY~ H,(nRo)H,(x-nRo)6(x-kRo). (19) 
n k 

The product of the two sums n and k can be written 
separately again: 

(20) 

After multiplying this equation by unity in the form 
of Ro/Ro, the sum over n yields a good approximation 
for an integral: 

- 1/Ro[I H,( U)H,(x- U) dU]  E 6(x-  kRo). 
k 

(21) 

The approximation of the sum over n by the integral 
is very close if Ro is small compared to the FWHM 
of Hr. This integral is the self convolution of the 
continuous distribution HI" 

H i  = 1/Ro[ H, * H,] E 6(x- kRo). (22) 
k 

For all further convolutions the same algorithm holds. 
The complete discontinuous distribution function fol- 
lows as the sum of the self convolutions of the con- 
tinuous distribution multiplied by the lattice function: 

P"(x) = [ Ho + ~,m (1/ Ro)m-' ( ~I'~ +17l"-l) ] 

x ~, 6(x-nRo) 
n 

x ~, 6(x-nRo). 
n 

(23) 

The Fourier transformation of this equation is the 
convolution of the correlation function Z and the 
reciprocal lattice G*: 

~:[P"(x)] = Z(h) * G* 

= [I+Ro~m (1/R°)m(E'('+E*-7)] 

• ~ [~  6(x-nRo)] 

EIRo E*IRo ] 
= I+ROl_E/Ro + l - ~ o j  

= {[ 1 + 2[E cos ( 2 ~ x a ) ( R o -  1)/Ro 

+ EIE/Rg(1--2Ro)] 
x [ 1 - 21E[ cos (27rx~) + IEIV Ro]-') 

• ~ [~  6(x-nRo)]. (24) 

Here, ~ symbolizes the Fourier transform and E is 
the Fourier transform of the continuous distribution 
H~. With this result (11) yields 

IMD(h) = E E F,F* _IV, { 6,~ 
t s 

+ [Z,s(h,)Z,~(h2)Zts(h3) * G*]}. (25) 

In (25) the correlation function Z,~ is a different 
function for all pairs of microdomain types t and s 
based on the distribution function P,~ as given by (11) 
and (12). In most cases these different distribution 
functions can be approximated by one distribution 
function Z '  that is identical for all pairs of micro- 
domain types t and s. In order to determine whether 
two microdomain types t and s are correlated at all, 
a function C,~ will be introduced. This function is 
one if correlation between the types t and s is allowed 
and otherwise zero. Thus (25) will be 

IMD(h) = E Z F,F* IV,{ 6,~ 
t s 

+ C,~[Z'(hl)Z'(h2)Z'(h3) * O*]}. (26) 

To allow fast calculation of the diffuse intensity a 
suitable function H~ should be chosen. Most straight 
forward solutions will be obtained by Gaussian or 
Lorentzian distributions. 

Distribution function for Gaussian distribution 
The Fourier transform of the distribution in the case 
of a Gaussian distribution will be derived. The 
integral over the distribution H~ must be unity so that 
a normalized distribution results: 

Hl(x)=(2,a')-l/2tr -1 exp[-½(x- t i )2 /o-2] .  (27) 

The modulus of the Fourier transform is given by 

IEI = exp t-2 (x (28) 
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The mth self convolution of H~ and its Fourier trans- 
form are: 

/47~(x) = (27r)-'/20"-'m-1/2 

xexp[-½(x-m~t)2/0"2m], (29) 

E?] = e x p  [-27r(x20"2)m]. (30) 

These formulas can easily be expanded for three- 
dimensional distributions: 

H, ,(x)  = (2"rr)-3/2(0"110"120"13) -1  

x exp {-½[(x,-~,)2/0"21, + ( X 2 - -  a 2 ) 2 / 0 " 2  2 

+ (x3-a3)210"~3]} (3"1) 
El~l exp 2 2 2 2 2 2 2 = [ - 2 " n "  (X  10"11 "Jr - x30"13)] (32) X20"12-}" 

Here H~I is the x component of the distribution 
function and EI~ the x component of the Fourier 
transform. In analogy to (31) and (32), the functions 
H12 , Hi3 and El2 , E13 are defined. The matrix 0"o of 
the displacement coefficients describes the FWHM 
of the distribution function in three-dimensional 
space. 

Fig. 4 shows the continuous distribution function 
P for various values of 0". The length of coherence is 
the length at which the FWHM of the peaks is equal 
to the separation of the peaks. At this length the 
distribution function is almost constant. The argu- 
ment of the exponential function in (29) has to be 
equal to ln(0.5) for ( x - m a ) =  a/2 .  Thus the critical 
value of m will be 

M = - l / [ 8  ln(0.5)(0"/t~)2]. (33) 

The length of coherence is the product of the average 
distance a and M. 

Concluding remarks 

The theory presented in this paper expands the theory 
given by Hashimoto (1974) to materials with several 
atoms per unit cell. Each microdomain is described 

(a) 
P(x) 

(b) 

c4 

. ..._- 

8 __+__ 
0,00 

Distance in multiples of the average separationa 

Fig. 4. Distribution function P(x) for a Gaussian distribution. The 
distribution is shown for different values oftr/a: (a) o/a = 0.10, 
(b) o'/a =0.12, (c) o'/a =0.14, (d) ~r/a =0.16. 

by the deviation of its structure factor from the struc- 
ture factor of the average structure. The correlation 
between the microdomains is described by a discon- 
tinuous distribution function. Following Hosemann 
(1951) and Hosemann & Bagchi (1952) the analytical 
Fourier transformation of this distribution function 
is developed. Therefore, fast calculation of intensities 
is made possible, which allows for quantitative analy- 
sis of diffuse scattering by disordered structures. 

Work was supported by funds of the BMFT. 

APPENDIX A 

It is shown here that the two sums 12 + I3 in (3) average 
approximately to zero. The two sums are 

I2,3(h) = 12 + /3  

= Y. Y Y~ ~. frAf*L exp [ -2zr ih(r , r  -rsL) ] 
K L i j  

+ X X X X A fK f*  exp [-2"rrih(rm - rsL)]. 
K L i j  

(A1) 

The vector r~r can be expressed by the sum of the 
vector to the ideal position plus a deviation from this 
position: rm = Rir +Arm.  Thus (A1) can be written 

I2.3(h) = ~ ~ ~ X frAf*L 
K L i j  

x exp [ -27r ih(R,r  - RjL) ] 

x exp [--2-a'ih(Ar~r -- Arjt)] 

+ E E E E  AA,,Y~ 
K L i j  

x exp [-2"a'ih(Rir - R j t ) ]  

x exp [-2~ih(Ar~K - Arjr)]. 

a s  

(A2) 

Both sums can be sorted into groups of atoms for 
which R i K - R  jr is identical. Within each of these 
groups the exponential function is identical and can 
be taken out of the sums. For the sake of clarity the 
outer sum over these groups of atoms will be omitted. 
The inner sum over all atoms of one group is thus 

I~.3(h) = ~ ~ ~)-'. fKAfj*'L 
K L i j  

x exp [-21rih(AriK - ArjL)] 

+ XXXX af, Kf* 
K L i j 

x exp [ - 2 ~ i h ( a r ~ K  - a r i D ] .  (A3) 

These sums can further be sorted into a group of pairs 
with both atoms outside any microdomain and a 
group with at least one atom within a microdomain. 
Within the first group, all atoms occupy ideal lattice 
positions. Therefore, the exponential term is unity. 
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Since the sum over all Af is zero: 

~ ArK = {(mArmsr.)--(msrmAK)}(fAr. - f sK)  
K i 

= 0 ,  (A4) 

the contr ibut ion of this first group is zero. Here mAK 
and mar are the relative occupations of  the site K 
by atoms A and  B, respectively. The argument  of  the 
exponent ia l  funct ion is abbreviated to eorL=2crh  
x (Ar i r - -ArsL) .  Since deviations from ideal  lattice 
positions are small,  the exponent ia l  funct ion can be 
expanded  into a series up to second-order  terms: 

t • 1 2 
I2.3 = ~, X ~, ~, f rAf*L(1 - | E i j K L - - ~ E  i j K L  ) 

K L i j  

• 1 2 + E y ~ E Af,,j*(1 - ,~ijK, -~ijk,).  (35) 
K L i j  

The constant  term averages to zero, due to (A4). Since 
eorL = - % L r ,  the l inear  terms add up to zero, i f  
anomalous  dispers ion can be neglected. The remain-  
ing sum can be grouped into a group with exactly 
one atom within a mic rodomain  and a group with 
both atoms within a microdomain .  The first group 
can further be sorted into groups with e constant. 
For these groups (A4) holds so that their contr ibut ion 
is zero. The only significant part left is the group with 
both atoms within  a microdomain .  For these pairs e 
and Af  are correlated• It cannot  be expected that their  
contr ibut ion will average to zero. Since e is small ,  
this quadrat ic  contr ibut ion of  12+13 to (3) can be 
neglected. 

A P P E N D I X  B 

The terms ISRO,2 and  ISRO,3 in (4) describe the contri- 
but ion of  pairs with one atom inside a mic rodomain  
and the other outside a mic rodomain  to the scattered 
intensity. It will be shown that these contr ibut ions 
average to zero. The two terms are 

IsRo.2.3(h) = ISRO.2 + ISRO,3 

= Y. X X X afoKaf*z. 
K L o n  

x exp [-2zrih(ror -r , ,L)] 

+ ~, ~, ~ ~, Af,,,KAf*L 
K L m p  

x exp [ -2¢r ih( rmr  - rpL)]. (B1) 

The vector r i r  can be expressed by the sum of  the 
vector to the ideal posit ion plus a deviat ion from this 

position: ritz = Ri r  +Arir. Thus (B1) can be written 
as 

Is~o,~,3 = Y E Y E 3foKAf*L 
K L o n  

x exp [-2¢rih(RoK - R,,L)] 

x exp [-27rih(Aror)] 

+ Y. E E E Af,,,rAf*L 
K L m p  

x exp [ -21r ih(R, ,g  - RpL)] 

x exp [ -2¢r ih( -ArvL)] .  (B2) 

Both sums can be sorted into groups of  atoms for 
which R i K - R j L  is identical.  Within  each of  these 
groups the exponent ia l  funct ion is identical  and can 
be taken out of  the sums. For the sake of  clarity the 
outer sum over these groups of  atoms will be omitted. 
The inner  sum over all atoms of  one group will thus 
be 

I~RO,2,3 = ~ ~ ~ ~ AfoKAf*L exp [-27rih(Aror)] 
K L o n  

+ E E ~, E AfmrAf*L exp [-27rih(-ArpL)]. 
K L m p  

(B3) 

The product  of  the sums over K and L can be written 
separately: 

ISRO,2,3 = E ~'. AfoK exp [-2¢rih( Aror ) ] ~, ~, Af*L 
K o  L n  

+ E Y. Af,,,r Y. ~ Afmr.Af*L 
K m  L p  

x exp [ -27r ih( -ArpL)] .  (B4) 

Owing to the definit ion of  Af, (A4) holds  and the 
sums over L, n and K, m are zero. Therefore,  the 
contr ibut ion of  ISRO,2 and  ISRO,3 in (4) is zero. 

References 
COWLEY, J. M. (1981). Diffraction Physics, pp. 148-149. Amster- 

dam: North-Holland. 
HASHIMOTO, S. (1974). Acta Cryst. A30, 792-798. 
HAYAKAWA, M. & COHEN, J. B. (1975). Acta Cryst. A31,635-645. 
HOSEMANN, R. (1951). Acta Cryst. 4, 520-530. 
HOSEMANN, R. & BAGCHI, S. N. (1952). Acta Cryst. 5, 612-614. 
SCHWARTZ, L. H. & COHEN, J. B. (1977)• Diffraction from 

Materials, pp. 403-424. New York: Academic Press. 
VAINSHTEIN, B. K. (1966). Diffraction by Chain Molecules, 

pp. 216-240. London: Elsevier. 


